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Abstract: An Infrared (IR)-passive microwave (PMW) blended technique is developed to derive
precipitation estimates over the Asia-Pacific domain through calibrating the temperature of brightness
blackbody from the Japanese Himawari-8 satellite to precipitation derived from the combined
PMW retrievals (currently MWCOMB2x) based on the probability density function (PDF)-matching
concept. Called IRQPE, the technique is modified and fine-tuned to better represent the spatially
rapidly changing cloud–precipitation relationship over the target region with PDF-matching tables
established over a refined spatial resolution of 0.5◦ lat/lon grid. The evaluation of the IRQPE shows
broadly comparable performance to that of the CMORPH2 in detecting rainfall systems of large
and medium-scales at a resolution of 1.0◦ degree. Rainfall variations from the two datasets over El
Niño-Southern Oscillation and the Madden Julian Oscillation active convective centers show well
consistency of each other, suggesting usefulness of the IRQPE in climate applications. Two approaches
for regional improvements are explored by establishing the PDF tables for a further refined spatial
resolution and by replacing the PMW-based precipitation ‘truth’ fields with the surface gauge data to
overcome the shortcoming of PMW-based retrievals in capturing orographic rainfall over the Taiwan
area. The results show significant improvements. The rainfall patterns of revised the IRQPE at a
resolution of 0.1◦ degree on above the 5-day timescale correlate well with the Taiwan official surface
ground truth called the QPESUMS, which is a gridded set of gauge-corrected Radar quantitative
precipitation estimations. The root mean square error of the revised IRQPE on estimating the Taiwan
overall land rainfall is close to Radar-derived rainfall accumulations on a 30-day time-scale.

Keywords: geostationary precipitation estimates; probability density function-matching

1. Introduction

Precipitation is one of the most vital weather elements influencing daily life. Rainfall
measurements are highly needed for all weather agencies not only for their local monitoring
and forecast, but also for tracking the global weather systems and the large-scale climate
variabilities. Along with surface rain gauge observations and the radar network, satellite
observations provide crucial information on precipitation over regions of poor or even
no ground-based observations, especially for the global spacious marine area. With the
Geostationary (GEO) satellite broadcast data services and the associated estimation tech-
niques, a real-time satellite estimated precipitation producing process can be established in
a weather agency to routinely generate gridded rainfall data over a broad spatial domain
to satisfy the aforementioned user needs.

IR-based precipitation estimation techniques have been explored and developed for
decades based on the assumption that the relationship between precipitation and cloud
top temperature as measured from the GEO IR channels is monotonic. Although it is an
indirect approach, the high correlation between deep convection and rainfall makes GEO
IR-based precipitation estimation technically possible and practically useable, especially
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for the climate monitoring applications which require data covering over a large spatial
domain, expanding over an extensive time period, and capable of capturing tropical
convective systems over both land and ocean [1–3]. Earlier techniques start from the index
concept [4,5], which studied the temperature of brightness blackbody (TBB) threshold
values for guiding the rainfall estimates. Early efforts utilized radar observations and/or
gauge measurements over selected regions as the ground truth to establish the cloud–
precipitation relationship for the estimation of precipitation over a much wide region (even
the entire tropical/sub-tropical areas in some cases). Inaccuracy occurs in the estimated
precipitation due to the different cloud–precipitation relations over the training and the
application areas and seasons. This problem is mitigated by using the passive microwave
(PMW) retrievals from the low earth orbit (LEO) satellites as the ‘truth’ of precipitation to
train the GEO IR data [6–8]. While this PMW-calibrated IR estimation strategy becomes the
standard practice for GEO IR-based techniques, the technical approaches to establish the
cloud and rainfall relationship differ among researchers. Broadly categorizing, there are
mainly three kinds of the approaches to calibrate the IR data against the PMW retrievals:
artificial intelligence (AI) techniques, regression modeling, and probability density function
(PDF)-matching technique. For example, Hsu et al. [9] employed AI techniques to develop
PERSIANN (Remotely Sensed Information using Artificial Neural Networks) [9,10], which
is one of the current popular IR-based precipitation estimates. Kuligowski [11] used
linear regression to connect GEO multi-band data with PMW and produce SCaMPR (Self-
Calibrating Multivariate Precipitation Retrieval), which is one of the NOAA’s official GEO
IR precipitation estimation products. Turk et al. [12] proposed probability density function
(PDF)-matching to set up look-up tables for transferring cloud brightness measurements
to precipitation. The concept of the PDF-matching technique is very straightforward and
broadly adopted by many related applications [13–16].

Compared to the indirect rainfall estimations from GEO observed IR and radiance
data from other channels, the PMW-based rainfall estimations from LEO platforms are
based on a more direct physical relationship between precipitation and cloud features
and therefore yield more accurate estimation of precipitation than those derived from
the IR-based approaches [17–24]. The PMW retrieval algorithm, such as the Microwave
Integrated Retrieval System (MiRS) [18] and Goddard Profiling Algorithm (GPROF) [19],
are used to produce PMW level 2 retrieval at the field of view (FOV) of the LEO obser-
vations. LEO satellite observations, however, are restricted by their limited time/space
coverage. Even with data from more than 10 LEO satellites, PMW retrievals can cover only
about one fourth of the global domain at any moment. An assortment of techniques is
developed to integrate these level 2 retrievals into a grid analysis of precipitation (level
3 products) covering the entire target domain. NOAA’s Climate Prediction Center (CPC)
morphing technique (CMORPH) is the first global product of this kind for the PMW-based
rainfall estimations [20,21]. The Tropical Rainfall Measurement Mission (TRMM) Merged
Precipitation Analysis (TMPA) [22] and its successor Integrated Multi-Satellite Retrievals
(IMERG) [23], both developed by NASA’s Precipitation Measurement Mission (PMM), are
also PMW-based satellite precipitation estimates. They are all the main current satellite
estimated precipitation products and widely used in the worldwide operation agencies
and research. Including the Global Satellite Mapping of Precipitation (GSMaP) provided
by the Japan Aerospace Exploration Agency (JAXA) [24], all these PMW-based satellite pre-
cipitation estimates basically used a similar morphing technique, but their PMW retrieval
algorithms and detailed design are different. These groups are dedicated to continuous
improvement, for example, NOAA CPC has upgraded their CMORPH to the second gener-
ation (CMOPRH2), covering the entire globe from the pole to the pole, with substantially
improved performance especially for cold season precipitation (snowfall) [25].

Although an indirect estimation in nature, GEO IR-based precipitation estimates have
their unique advantages. In particular, its near global coverage of high temporal and spatial
resolution makes it irreplaceable. Even the aforementioned level 3 techniques use GEO
IR-based estimates to derive motion vectors to interpolate the level 2 retrievals and to fill in
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the gaps where/when no PMW-based retrievals are available nearby. Another advantage
of the GEO IR-based precipitation products is their extended data period. PMW-based
satellite precipitation estimates usually do not cover periods before 1998 due to the limited
availability of LEO PMW measurements. The main ingredient for the GEO precipitation
product is the IR data, which is available at least from 1982. This extended data period is one
of the reasons why IR-based GEO precipitation products are chosen instead of seemly better
PMW-based satellite precipitation estimates in some climate applications. Additionally, the
next generation GEO satellites, such as Himawari-8(H8) and NOAA GOES 16, have higher
observation resolution and more bands, further making researchers draw new interests on
the GEO precipitation estimate techniques and its improvements.

In this study, our first goal is to evaluate a GEO IR-based precipitation product
generated by a PDF-matching technique for an operational purpose. NOAA CPC has
applied the PDF-matching, called the IRRAIN algorithm, to supplement the PMW-based
CMORPH estimates in an operational way. We employ this mature technique and use H8
IR data to produce GEO precipitation estimates over the Asia-Pacific area; the product
name is currently called IRQPE. The PDF-matching approach is computationally efficient
and operational friendly; our evaluation intends to check the performance of the IRQPE
and see how it can support the applications in weather and climate monitoring.

The second goal of this study is to make regional improvements of the IRQPE. Good
GEO precipitation estimates depend on the ability to simulate the reasonable IR and rainfall
relationship, which usually varies season by season, location to location, and even changes
under different weather systems. Thus, the way to group the collocated samples for
establishing the relationship might also affect the quality of the IRQPE. Another direction
to make a regional improvement is to incorporate the local surface observations to replace
the reference rainfall truth from LEO PMW. PMW retrievals are known to perform better
over ocean than land area; by replacing it with local surface observations, the improvement
of the cloud–precipitation relationship over land area is expected.

This article is arranged as following: the IRQPE algorithm and study data are described
in Section 2. The performance of the IRQPE and the results of the improvements will be
presented in Section 3. Study conclusions and discussions will be given in the last section.

2. Data and Methods
2.1. Study Data

In this study, we intend to develop GEO IR-based 30-min precipitation estimates on a
0.05◦ lat/lon grid over the spatial domain [60◦ S–60◦ N, 75◦ E–155◦ W] for a 4-year period
from 2018 to 2021.

Two categories of satellite data are utilized in this study to produce the IRQPE, i.e., the
TBB data from the IR measurements aboard a geostationary satellite and the precipitation
retrievals derived from the PMW measurements from LEO platforms. Specifically, the GEO
TBB data used in this study are those measured by the Japanese Hiwamari-8 (H8) satellite
and processed by the Japan Meteorological Agency (JMA) and shared with the Central
Weather Bureau (CWB). The H8 TBB used in this study is preprocessed at CWB by linear
interpolation from a spatial resolution of a roughly 2 km grid into a 0.05◦ lat/lon grid and
covering a spatial domain [60◦ S–60◦ N, 70◦ E–150◦ W]. The temporal interval of the H8
TBB data is 10 min.

PMW-based precipitation retrievals are utilized in this study as the ‘truth’ to calibrate
the GEO TBB data. Instead of using PMW level 2 precipitation retrievals from individual
satellites, a composite PMW precipitation retrievals, the MWCOMB2x of NOAA CPC,
are taken. The MWCOMB2x is constructed by combining level 2 retrievals from more
than ten LEO satellites with a PMW sensor [25]. Level 2 precipitation retrievals from
individual satellites are first calibrated against a common reference standard, the level 2
retrievals derived from the GPM Microwave Imager (GMI) using the GPROF algorithm [19].
These inter-calibrated level 2 retrievals are then composited into a global field of 30-min
precipitation at a spatial resolution of 0.05◦ latitude/longitude. When/where level 2
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retrievals are available from multiple satellites, only the one with the highest quality is
used. The quality of the precipitation retrievals from various satellites is ranked based on
evaluations against independent observations and subjective experiences.

Later in this study in improving the IRQPE over the Taiwan area, the grid analysis
of local surface observations over the island is taken to replace the MWCOMB2x as the
‘truth’ to calibrate the GEO TBB data. The grid analysis of the 30-min rain rate is prepared
through interpolation of gauge observations from about 800 stations.

For verifying the performance of the IRQPE, CMORPH2 is used as a comparison
benchmark. When the studied domain comes to the Taiwan area, gauge-corrected radar
precipitation estimates, called QPESUMS [26], cover the island of Taiwan and its adjacent
oceanic regions, and is employed as the ground truth of precipitation.

2.2. IRQPE Algorithm

There are two main assumptions for the IR-based precipitation estimation tech-
nique, i.e.,

• Precipitation comes from tall clouds with cold cloud top temperature (TBB); and
• The taller the cloud, the colder the cloud top temperature, and the heavier the precipitation.

This leads to the backbone estimation strategy: to establish an empirical relationship
between precipitation and cloud top temperature. IRQPE adopts the PDF-matching concept
of Turk [12] and the CPC IRRAIN algorithms. In such an effort, the relationship between
the precipitation and the GEO TBB is established through locally matching the PDF of TBB
with that of the precipitation using co-located data pairs.

A step-by-step procedure taking the MWCOMB2x as the ground truth to calibrate the
GEO TBB is described below:

1. Time/space collocated TBB/MWCOMB2x data pairs collected.
2. Histograms for TBB and MWCOMB2x assembled for each 0.5◦ lat/lon and for

each hour.
3. PDF tables (cumulated histogram) constructed for each hour and for each 0.5◦ lat/lon

using histograms for a 7-h duration centering at the target hour, for a 31-day period
centering at the target date, and over a spatial domain of 1.5◦ lat/lon centering at the
target grid box.

4. The data (histogram) collecting domain is expanded until at least a certain number of
pairs (2000 is set in this study) of raining cases are included.

5. The established PDF tables are then converted to a TBB–precipitation relationship, as-
suming TBB at a certain percentile is associated with precipitation at the same percentile.

From the above procedure, one would see that the TBB–precipitation relationship of
the IRQPE is established locally and evolves with time through matching the PDF of TBB
against that of the MWCOMB2x. The relationship is monotonic, non-linear, and regionally,
seasonally, diurnally dependent.

To demonstrate the outcome of the IRQPE, a sample case was draw in Figure 1 by
comparing the IRQPE with MWCOMB2x and CMORPH2 on their original resolution of
0.05◦ lat/lon grid for a 30-min period starting from 00:00 UTC, 24 July 2021. As expected,
combined PMW level 2 retrievals (MWCOMB2x) exhibit large areas of non-coverage over
the 30-min, despite the fact that PMW from 10 satellites is included in the construction of
the MWCOMB2x for the period. The second generation CMORPH (CMORPH2) fills in the
gaps of the MWCOMB2x through interpolation of the PMW retrievals over a combined
time/space domain, taking advantage of the motion vectors of the precipitating systems
derived from the GEO-based precipitation estimates at consecutive time steps. Our IRQPE,
defined through local calibration against the MWCOMB2x, reproduces the large-scale
precipitation patterns very well, with differences against the COMRPH2 observed in
smaller scales features and in local maxima. In particular, the IRQPE tends to generate
wider areas of light rain compared to the CMORPH2.
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2.3. Three Sets of IRQPE Experimented in This Study

Three sets of the IRQPE were produced in this study. The IRQPE_V0 is the original
version with the same design as the CPC IRRAIN, shown by the procedure listed in
Section 2.2. The IRQPE_V0 is produced the same for the Asia-Pacific domain as the H8
TBB and will be mainly used for climate applications. Two regional improvements of the
IRQPE are called the IRQPE_EA and IRQPE_TWN for East Asia and Taiwan, respectively.
The IRQPE_EA is designed for testing the effect of the changing sampling domain for
constructing the PDF tables. The IRQPE_V0 was produced by constructing the PDF table
for each 0.5◦ lat/lon gridbox, the IRQPE_EA was tested by changing to 0.2◦ lat/lon gridbox.
The IRQPE_TWN is the one designed for incorporating the local surface observations
to calibrate the GEO TBB data. The PDF tables in the IRQPE_TWN were established on
an even finer resolution of 0.1◦ lat/lon gridbox to better resolve the rapid changes in
cloud–precipitation relationship caused by complex topography there.

3. Results
3.1. The Verification and Climate Applications of IRQPE

The verification of the IRQPE_V0, which was established and produced with the same
design as the CPC IRRAIN, is presented in this section. The CPC CMORPH2 is used for the
comparison. Since our goals start from verifying the large-scale performance of the IRQPE,
the data is upscaled to 1◦ lat/lon grid from the original 0.05◦ lat/lon grid.

A thorough examination is conducted for a 4-year period from 2018 to 2021. Firstly,
4-year climatological seasonal mean derived from the IRQPE was compared with that from
the CMORPH2 (Figure 2). The large-scale rainfall pattern of the IRQPE highly resembles the
CMORPH2 for both winter and summer seasons, including the seasonal migration of the
rainfall systems, such as the Intra-Tropical Convergence Zone (ITCZ) and the Southwestern
Pacific Convergence Zone (SPCZ), as well as the mid-latitude/tropical storm track over
the North Pacific. The IRQPE also performs a reasonable topographic effect, which can be
seen over the Philippines, North Australia, and Indochina. Quantitatively, the difference
between the climatological mean from the two datasets (Figure 2c,f) are minor, but some
systematic spatial patterns might reflect the important characteristics of the IRQPE, such
as less summer monsoon rainfall in DJF over the coastal area of North Australia was
produced in the IRQPE than in the CMORPH2. These differences may be attributable to
the underestimates of the IRQPE for rainfall related to the topographic effect. On marine
areas, places over the edge of the tropical rain belt were shown wetter in the IRQPE than
in the CMORPH2; the difference might imply the overestimates of the IRQPE for the
non-precipitating circus anvil cloud.
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The IRQPE also performs well in terms of day-to-day variation of the large-scale
rainfall pattern. The spatial correlation between the IRQPE and CMORPH2 rainfall ac-
cumulation in four different time scales from daily to monthly for a broad area over
Asia-Pacific (40◦ S–50◦ N, 80◦ E–160◦ W) is displayed in Figure 3. The correlation coeffi-
cients increase with the rainfall accumulation time scale. The number reaches higher than
0.95 for 30-day precipitation and over 0.9 both for 10-day and 5-day, showing the IRQPE can
do as well as the CMORPH2 in climate monitoring applications. Down to the daily scale,
the correlation coefficients still have values higher than 0.8, indicating the IRQPE is also
able to capture the large-scale spatial patterns well in the weather time scale. To provide
more detailed comparisons in seasonality and different climate zones, Table 1 lists the mean
correlation coefficients separately in four seasons and three latitudinal bands for tropical,
sub-tropical, and mid-latitude areas. It shows that the correlations are higher in the tropics
and sub-tropics than in the mid-latitude. The difference among seasons is not significant,
only that the correlation in the spring season shows lower than others. Overall speaking,
the correlation coefficients can be seen over 0.9 for tropics and sub-tropics in all seasons
in term of the time scale above 5-day. Point-to-point scatter plots (Figure 4) also support
the above finding that higher correlation and smaller deviations are seen at low-latitude
climate zones and longer time-scale accumulation rainfall. From these analyses, we infer
that the IRQPE is able to do as good as the CMORPH2 in terms of climate applications,
which usually focus more on lower latitude and use data with the time scale above 5-day.
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Figure 4. The point-to-point scatter plot for IRQPE and CMORPH2 over 80◦ E–160◦ W in 3 latitudinal
bands: From left to right: 30-day rainfall, 10-day rainfall, 5-day rainfall. From top to bottom: mid-
latitude (30◦ N–50◦ N), sub-tropic (10◦ N–30◦ N), tropics (10◦ S–10◦ N).
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Table 1. The mean correlation coefficients between IRQPE and CMORPH2 for 3 latitudinal bands
and 4-time scales in 4 seasons based on the period of 2018–2021. The 3 latitudinal bands are Tropics
(10◦ S–10◦ N), Sub-Tropics (10◦ N–30◦ N), and Mid-Latitude (30◦ N–50◦ N).

30-Day Rainfall Tropics Sub-Tropics Mid-Latitude

JFM 0.962 0.928 0.929
AMJ 0.962 0.970 0.925
JAS 0.975 0.970 0.969

OND 0.974 0.972 0.937

10-day rainfall Tropics Sub-Tropics Mid-Latitude

JFM 0.936 0.891 0.851
AMJ 0.939 0.939 0.872
JAS 0.943 0.945 0.929

OND 0.944 0.948 0.874

5-day rainfall Tropics Sub-Tropics Mid-Latitude

JFM 0.904 0.853 0.762
AMJ 0.919 0.913 0.819
JAS 0.916 0.921 0.890

OND 0.920 0.925 0.809

1-day rainfall Tropics Sub-Tropics Mid-Latitude

JFM 0.871 0.792 0.711
AMJ 0.888 0.861 0.758
JAS 0.886 0.881 0.837

OND 0.889 0.893 0.754

El Niño-Southern Oscillation (ENSO) and the Madden Julian Oscillation (MJO) are
the two most important climate variabilities in the intra-seasonal to interannual time scale.
IRQPE can be used to track the precipitation variations associated with these climate
variabilities. Figure 5 demonstrates the ENSO monitoring applications of the IRQPE. Time
evolution of the equatorial wet/dry anomalies derived from the IRQPE for 2018–2021
is presented in Figure 5a. It shows tropical wet anomalies dominate more over Central
Pacific before 2020 summer, but the pattern changes in the later years with wet anomalies
dominate over the Indian Ocean and Maritime Continent, reflecting that the ENSO state
changed from a warm event to a cold event in 2020 (NINO3.4 index and two representative
late extended boreal winter season rainfall anomalies in 2019 and 2021 are shown in
Figure 5b–d). The tropical rainfall monitoring information is supported by the consistent
results from the OLR anomalies (dashed contoured in Figure 5a), which is a common proxy
for tropical convection. A further verification of the IRQPE with CMORPH2 based on
10-day rainfall data is shown in Figure 6. The highly correlated rainfall fluctuations from
the two datasets support the consistency between the IRQPE and CMORPH2 on monitoring
ENSO-associated tropical rainfall variations.

The MJO is the dominant tropical wave and the major source of weather predictability
in the intra-seasonal time scale, thus a key component in climate monitoring. Based on EOF
analysis, MJO indices consisting of two leading principal components have been widely
used for tracking MJO activities. To examine the climate applications of the IRQPE on the
MJO phenomena, 5-day precipitation anomalies are computed and regressed against the
time series of the MJO second leading mode defined by Chen [27] (Figure 7a). The outcome
shows, as expected, the MJO tropical dipole pattern with active (suppressed) convection
over the Indian Ocean and suppressed (active) convection over the Maritime Continent, as
well as the associated rain band over East Asia, which are all classic MJO-associated rainfall
patterns and have been identified with previous MJO studies [27,28]. Replacing the IRQPE
by CMORPH2, the regression map (not shown) looks almost the same as Figure 7a. The
point-to-point scatter plot from the MJO case days over the tropical area and sub-tropical



Atmosphere 2023, 14, 342 9 of 17

area (Figure 7b,c) also shows highly consistency between the IRQPE and CMORPH2. These
results all support the qualified performance of the IRQPE on MJO applications.
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Figure 5. IRQPE application for ENSO. (a) Time-longitude cross sections of IRQPE anomaly (colored,
unit: mm/day) and OLR anomaly (dash contoured, only for negative value below −5 W/m2) over
15◦ S–15◦ N (b) Monthly NINO3.4 ENSO index. (c,d) Seasonal anomaly of IRQPE for late extended
boreal winter season (January~March) in 2019 and 2021, respectively.

Atmosphere 2023, 14, x FOR PEER REVIEW 9 of 17 
 

 

  

Figure 5. IRQPE application for ENSO. (a) Time-longitude cross sections of IRQPE anomaly (col-

ored, unit: mm/day) and OLR anomaly (dash contoured, only for negative value below −5 W/m2) 

over 15° S–15° N (b) Monthly NINO3.4 ENSO index. (c,d) Seasonal anomaly of IRQPE for late ex-

tended boreal winter season (January~March) in 2019 and 2021, respectively. 

 

Figure 6. The consistency of IRQPE (solid lines) and CMORPH2 (dashed lines) on monitoring ENSO 

tropical rainfall anomalies. The red curve presents the mean rainfall value over 90° E–140° E. The 

blue curve presents the mean rainfall value over 150° E–160° W. The black curve presents the corre-

lation between the two datasets over the whole tropical band from 80° E–160° W. 

The MJO is the dominant tropical wave and the major source of weather predictabil-

ity in the intra-seasonal time scale, thus a key component in climate monitoring. Based on 

EOF analysis, MJO indices consisting of two leading principal components have been 

widely used for tracking MJO activities. To examine the climate applications of the IRQPE 

on the MJO phenomena, 5-day precipitation anomalies are computed and regressed 

against the time series of the MJO second leading mode defined by Chen [27] (Figure 7a). 

The outcome shows, as expected, the MJO tropical dipole pattern with active (suppressed) 

convection over the Indian Ocean and suppressed (active) convection over the Maritime 

Continent, as well as the associated rain band over East Asia, which are all classic MJO-

associated rainfall patterns and have been identified with previous MJO studies [27,28]. 

Replacing the IRQPE by CMORPH2, the regression map (not shown) looks almost the 

Figure 6. The consistency of IRQPE (solid lines) and CMORPH2 (dashed lines) on monitoring ENSO
tropical rainfall anomalies. The red curve presents the mean rainfall value over 90◦ E–140◦ E. The blue
curve presents the mean rainfall value over 150◦ E–160◦ W. The black curve presents the correlation
between the two datasets over the whole tropical band from 80◦ E–160◦ W.
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The examinations described in this section demonstrated that despite a simple tech-
nique using only the GEO IR data, the IRQPE is capable of generating precipitation es-
timates with a reasonably high quality for key applications in large-scale weather and
climate fields.

3.2. Regional Improvement of IRQPE

The verification in Section 3.1 is based on the 1 × 1 degree lat/lon grid for examining
the climate large-scale application of the IRQPE, but the high-resolution performance of the
IRQPE also needs to be examined. A case in the first 10-day on August 2021 is selected as an
example for the comparison of data on a 0.1◦ lat/lon resolution. A quick look shows that the
10-day mean rainfall pattern of the CMORPH2 and IRQPE_V0 is quite similar (Figure 8a,b),
showing that the IRQPE_V0 is also able to reflect the regional high-resolution features.
However, when it comes to the regional scale, users will have higher expectations on the
accuracy for local detailed structures. A regional improvement of the IRQPE focusing on
the East Asia region, called the IRQPE_EA, is therefore designed to try the fine-tune. In this
regional version, the collocated IR and precipitation data pairs were collected in a smaller
spatial domain (change from 0.5◦ lat/lon gridbox to 0.2◦ lat/lon gridbox) for constructing
the look-up table to increase its ability on resolving inhomogeneous local features, such
as those affected by topography or local circulations. The outcome of the IRQPE_EA
(Figure 8c) presents a better resemblance to the CMORPH2 than the original IRQPE_V0.
This can be further confirmed by the scatter plot comparison between the IRQPE_V0 and
the IRQPE_EA against the CMORPH2 (Figure 9), which shows much closer point-to-point
agreements for the new regional version. The above results demonstrate that the quality of
the IRQPE for high-resolution can be improved by adjusting the sample grouping approach.
Another way to improve the IRQPE is to incorporate local surface observations, which is
also performed in this study with just focusing on Taiwan area. The IRQPE_TWN will be
described in the next section, but here it was also computed and shown in Figure 8d by
inserting onto the IRQPE_EA. Figure 8d highlights the abundant torrential rainfall over
south Taiwan in the mountain area, which is obviously underestimated by the CMORPH2.
This shows that the CMORPH2 (fundamentally the MWCOMB2x, or the level 2 PMW
retrievals infused into them) is not necessary a “truth” over places with very complicated
topography, such as the Taiwan area. The comparison here is on a product-to-product basis,
a further step will next verify the improvement of the IRQPE_EA.

Comparing the IRQPE with CMORPH2 is on a product-to-product basis. It does
have a shortcoming when the truth is not necessary on the CMORPH2 side. To verify the
improvement of the IRQPE_EA, we can compare the IRQPE directly with the MWCOMB2x,
which was defined as “truth” when producing the IRQPE. Figure 10a,b shows the point-to-
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point correlation between the MWCOMB2x and the two versions of the IRQPE from data
during August 2019–2021. The comparison now is based on a fitting concept. The higher
correlation means the IRQPE more closely fits the truth. Comparing the two correlation
maps in Figure 10a,b, as well as the frequency distribution of their difference in Figure 10c,
supports the effective improvement of the IRQPE_EA by adopting a smaller sampling unit.
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Figure 10. Point-to-point correlation between IRQPE and MWCOMB2x from data during August
2019–2021 on a spatial resolution of 0.05◦ lat/lon. (a) IRQPE_V0. (b) IRQPE_EA. (c) Frequency
distribution of the grid points from the difference of the 2 correlation maps in (a,b).

3.3. Improvements of IRQPE over Taiwan Region by Incorporating Local Surface Data

This section introduces another regional improvement of the IRQPE by incorporating
local surface data as the calibrators. PMW retrievals have been recognized to perform much
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less well over land area than ocean, especially for the areas with complex topography. We
take advantage of the high quality and high density of Taiwan surface observations to re-
place the MWCOMB2x as the reference truth in building the look-up tables for transferring
the IR TBB measurements to precipitation. The local surface observations provide rainfall
measurements of much higher quality than the MWCOMB2x. Moreover, the surface obser-
vations have more data samples for building the cloud–precipitation relationship using
data over a narrower time/space domain. This local version IRQPE_TWN was designed by
grouping the look-up table in 0.1 × 0.1 lat/lon gridbox, higher than the IRQPE_V0 (in 0.5◦

lat/lon gridbox) and IRQPE_EA (in 0.2◦ lat/lon gridbox). As shown in Section 3.2, a finer
resolution in the look-up table can help better reveal the fine local rain pattern structure.
The performance of the IRQPE_TWN will be verified with QPESUMS, the gauge-corrected
radar precipitation estimates. In order to show the improvement by incorporating local
surface data, a version named the IRQPE_MW was also performed with the same design as
the IRQPE_TWN, but using the MWCOMB2x as the reference truth in building the look-up
tables. The CMORPH2, the integrated PMW product, is also compared.

We start the comparison with an inspection on the 4-year mean precipitation derived
from the various products. The 4-year mean rain maps in the cold season (NDJFMA) and
warm season (MJJASO) for the QPESUMS, IRQPE_TWN, IRQPE_MW, CMORPH2 are
shown in Figure 11. The maps show that only the IRQPE_TWN (Figure 11b,f) can resemble
the detailed rainfall pattern as the QPESUMS (Figure 11a,e). The IRPQE_TWN is able to
highlight the winter significant torrential rainfall caused by the northern monsoon over
northern Taiwan and the dry leeside part over the southwest, as well as the summer torren-
tial extremes. The IRQPE_MW (Figure 11c,g) more resembles the CMORPH2(Figure 11d,h),
both have better performance in summer than in winter. The comparison of monthly mean
rainfall for all Taiwan land areas is shown in Figure 12, again showing the IRQPE_TWN is
closer to the QPESUMS and is improved compared to the IRQPE_MW for each month in
terms of quantity measurements.
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Figure 11. The 4-year mean rain map over Taiwan area for (top) cold season (NDJFMA) and (bottom)
warm season (MJJASO). (a,e) QPESUMS, (b,f) IRQPE_TWN, (c,g) IRQPE_MW, (d,h) CMORPH2.
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Figure 12. The monthly mean rainfall for Taiwan land area from 3 satellite precipitation estimates
(solid green: IRQPE_TWN, dashed green: IRQPE_MW, blue: CMORPH2) and the reference ground
truth (black: QPESUMS).

Performance of the IRQPE_TWN on data variation from a daily to monthly time
scale is further checked. Spatial correlation was computed over the Taiwan land area with
reference to the ground truth QPESUMS. For daily variation (Figure 13a), the IRQPE_TWN
shows comparable performance with the CMORPH2 in the summer wet season, while
outperforming the CMORPH2 in the winter cold season. When the rainfall accumulation
time scale is over 5 days (Figure 13b–d), the IRQPE_TWN shows higher correlation than
the IRQPE_MW and CMORPH2 for all seasons. Notice the outperformance is clearer in the
longer time scale. Another evaluation was performed by examining the root mean square
error (RMSE) for the Taiwan land rainfall as the whole (Figure 14). Radar QPE is also
included in the comparison for serving as a benchmark reference for the satellite estimates.
Again, the comparison shows the IRQPE_TWN performs better in the longer time scale.
For daily rainfall (Figure 14a), the IRQPE_TWN has larger RMSE than the IRQPE_MW
and CMORPH2. For 5-day accumulation rainfall (Figure 14b), the IRQPE_TWN has
shown comparable RMSE with another two satellite estimates. When it comes to 10-day
accumulation rainfall (Figure 14c), the IRQPE_TWN clearly outperforms the other two
satellite estimates and is closer to the performance of Radar QPE. For monthly mean, the
RMSE of the IRQPE_TWN is almost the same as Radar QPE.
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Figure 13. The spatial correlation with the ground truth (QPESUMS) from IRQPE (solid green:
IRQPE_TWN, dashed green: IRQPE_MW) and CMORPH2 (blue) for 4-time scale data: (a) 1-day,
(b) 5-day, (c) 10-day, (d) 30-day.
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Figure 14. The RMSE derived from comparing with QPESUMS for IRQPE (solid green: IRQPE_TWN,
dashed green: IRQPE_MW) and CMORPH2 (blue) for 4-time scale data: (a) 1-day, (b) 5-day, (c) 10-day,
(d) 30-day. Radar rainfall estimates is also compared (dashed black).

4. Conclusions and Discussion

Precipitation observed from space is changing from estimating to measurement when
entering the GPM era. MW-based estimates such as the IMERG, CMORPH, and GSMaP are
the current main satellite precipitation estimates products. Nevertheless, the regional data
quality is still questioned for these state-of-the-art high-resolution global gridded rainfall
datasets. In this study, we have shown that the IRQPE has the comparable quality with the
CMORPH2 in describing the large-scale climate rainfall variabilities. The PDF-matching
approach for establishing the cloud–precipitation relationship is simple but quite effective
for producing reasonable IR-based precipitation estimates for an operational need. With
the regional improvement of the IRQPE by incorporating local surface rainfall observations,
the IR-based GEO precipitation estimates can better capture local orographic rainfall. These
all suggest the potential applicability of the IRQPE in the large-scale climate monitoring, as
well as the regional applications.

To refine the calibration using data over a smaller domain to better reflect regional
variations in the cloud–precipitation relationship will be our continuous work. However,
realization of such a calibration requires that the calibrator needs to present reasonable
quality in representing the regional precipitation variations and at a fine time/space resolu-
tion [29]. Over the island of Taiwan and its adjacent oceans, radar estimation of precipita-
tion serves this purpose very well, as shown in our experiments, as a calibrator. However,
over other portions of the broad H8 domain, no such high-quality and high-resolution
precipitation data, other than satellite-based PMW retrievals such as the MWCOMB, are
available. In our future work, we will explore how we may take advantage of the MW-
COMB to calibrate the GEO IR data to better reflect the temporal/spatial variations of the
cloud–precipitation relationship.

The primary purpose of this paper is to describe the development, verification, and
applications of the IRQPE precipitation estimation products. In this paper, comparison was
conducted against the CMORPH2 products because our IRQPE is calibrated against the
MWCOMB2x which is the backbone of CMORPH2. A comparison against the MWCOMB2x
and CMORPH2 provides us with insight on to what extent a technique using GEO IR data
only may achieve and to what extent the degraded performance may be attributable to the
limited information content from the IR and the imperfect calibrator (MWCOMB2x), re-
spectively. Inter-comparison of our products to other satellite-based precipitation estimates,
such as the integrated satellite products (e.g., IMERG, GSMaP) and other GEO IR-based
data sets (e.g., Hydro-Estimator, PERSIANN), provides an insight into how we may benefit
from each other’s work. We will perform the inter-comparison as a follow-up work.

Our work described in this paper demonstrated the usefulness of an IR-based precipi-
tation estimation product for operational applications of weather and climate. Weaknesses,
however, exist. First, the IRQPE is based on an empirical local relationship between the
cloud and the precipitation. Results achieved in this study, and from other published work,
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have shown that empirical approximation of the relationship will result in compromised
performance for the IR-based technique to detect and quantify extreme precipitation over
regions with a rapidly changing cloud–precipitation relationship, such as over the moun-
tainous regions. Secondly, in this study, only cloud top temperature (TBB) is used to reflect
the characteristics of precipitating clouds. While this is a reasonable assumption on the first
order, the intensity of precipitation is a result of complicated dynamic, thermodynamic,
and physical processes that are even a big challenge to be simulated with a modern-era nu-
merical model. In the future, we will explore a strategy to better represent the precipitating
clouds by infusing other satellites observed (e.g., water vapor) and models simulated (e.g.,
moisture flux, atmospheric instability). Thirdly, a calibrator used to establish the cloud–
precipitation relationship also needs to be re-examined. In this study, we have already
demonstrated the benefits of using surface observations to replace the satellite PMW-based
MWCOMB. We will continue the work in this front to work out a better mixture of gauge
data, radar estimates, and the MWCOMB as the calibrator over the entire target domain.
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